Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis

نویسندگان

  • Syandan Chakraborty
  • HaYeun Ji
  • Jack Chen
  • Charles A. Gersbach
  • Kam W. Leong
چکیده

Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed "cut-and-paste" mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transpositional transgenesis with piggyBac

Transposons are mobile genetic elements that are capable of self-directed excision and subsequent reintegration within the host genome. Transposase such as piggyBac, Sleeping Beauty and Tol2 catalyze these reactions and have shown potential as tools for the stable integration of transgenes when used in the binary plasmid mode. Recent modifications to the transposase and/or the terminal repeats ...

متن کامل

A Hyperactive Transposase Promotes Persistent Gene Transfer of a piggyBac DNA Transposon

Nonviral vector systems are used increasingly in gene targeting and gene transfer applications. The piggyBac transposon represents an alternative integrating vector for in vivo gene transfer. We hypothesized that this system could achieve persistent gene transfer to the liver when administered systemically. We report that a novel hyperactive transposase generated higher transposition efficiency...

متن کامل

Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis.

We have developed a unique method for mouse transgenesis. The transposase-enhanced pronuclear microinjection (PNI) technique described herein uses the hyperactive piggyBac transposase to insert a large transgene into the mouse genome. This procedure increased transgene integration efficiency by fivefold compared with conventional PNI or intracytoplasmic sperm injection-mediated transgenesis. Ou...

متن کامل

piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells.

A nonviral vector for highly efficient site-specific integration would be desirable for many applications in transgenesis, including gene therapy. In this study we directly compared the genomic integration efficiencies of piggyBac, hyperactive Sleeping Beauty (SB11), Tol2, and Mos1 in four mammalian cell lines. piggyBac demonstrated significantly higher transposition activity in all cell lines ...

متن کامل

A hyperactive piggyBac transposase for mammalian applications.

DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014